Axotomy-induced Smad1 activation promotes axonal growth in adult sensory neurons.

نویسندگان

  • Hongyan Zou
  • Carole Ho
  • Karen Wong
  • Marc Tessier-Lavigne
چکیده

Mature neurons have diminished intrinsic regenerative capacity. Axotomy of the peripheral branch of adult dorsal root ganglia (a "conditioning" lesion) triggers a transcription-dependent axon growth program. Here, we show that this growth program requires the function of the transcription factor Smad1. After peripheral axotomy, neuronal Smad1 is upregulated, and phosphorylated Smad1 accumulates in the nucleus. Both events precede the onset of axonal extension. Reducing Smad1 by RNA interference in vitro impairs axonal growth, and the continued presence of Smad1 is required to maintain the growth program. Furthermore, intraganglionic injection of BMP2 or 4, which activates Smad1, markedly enhances axonal growth capacity, mimicking the effect of a conditioning lesion. Thus, activation of Smad1 by axotomy is a key component of the transcriptional switch that promotes an enhanced growth state of adult sensory neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons.

Although intradendritic protein synthesis has been documented in adult neurons, the question of whether axons actively synthesize proteins remains controversial. Adult sensory neurons that are conditioned by axonal crush can rapidly extend processes in vitro by regulating the translation of existing mRNAs (Twiss et al., 2000). These regenerating processes contain axonal but not dendritic protei...

متن کامل

PI3K-GSK3 signaling regulates mammalian axon regeneration by inducing the expression of Smad1

In contrast to neurons in the central nervous system, mature neurons in the mammalian peripheral nervous system (PNS) can regenerate axons after injury, in part, by enhancing intrinsic growth competence. However, the signalling pathways that enhance the growth potential and induce spontaneous axon regeneration remain poorly understood. Here we reveal that phosphatidylinositol 3-kinase (PI3K) si...

متن کامل

The Reappearance of a Developmental Stage-Specific Adult Regenerating Neurons of the Cockroach

A monoclonal antibody has previously been described that binds to all neurons in the 15 d (50% development) cockroach embryo but to only a small subset of neurons in the adult (Denburg et al., 1989). Experiments were performed in order to determine whether the developmental stage-specific antigen recognized by this antibody would reappear in adult neurons that were induced to undergo axonal reg...

متن کامل

Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons.

Axon growth potential is highest in young neurons but diminishes with age, thus becoming a significant obstacle to axonal regeneration after injury in maturity. The mechanism for the decline is incompletely understood, and no effective clinical treatment is available to rekindle innate growth capability. Here, we show that Smad1-dependent bone morphogenetic protein (BMP) signaling is developmen...

متن کامل

Morphology and Nanomechanics of Sensory Neurons Growth Cones following Peripheral Nerve Injury

A prior peripheral nerve injury in vivo, promotes a rapid elongated mode of sensory neurons neurite regrowth in vitro. This in vitro model of conditioned axotomy allows analysis of the cellular and molecular mechanisms leading to an improved neurite re-growth. Our differential interference contrast microscopy and immunocytochemistry results show that conditioned axotomy, induced by sciatic nerv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 22  شماره 

صفحات  -

تاریخ انتشار 2009